Cougar Predation Key To Ecosystem Health

A new study by researchers from Oregon State University found that cougars in Zion National Park have a profound impact on other aspects of the ecosystem, primarily by controlling deer populations and the ecosystem alterations related to deer browsing.

The general disappearance of cougars from a portion of Zion National Park in the past 70 years has allowed deer populations to dramatically increase, leading to severe ecological damage, loss of cottonwood trees, eroding streambanks and declining biodiversity. Researchers are calling it a “trophic cascade” of environmental degradation.

This “trophic cascade” of environmental degradation, all linked to the decline of a major predator, has been shown in a new study to affect a broad range of terrestrial and aquatic species, according to scientists from Oregon State University.

The research was just published in the journal Biological Conservation — and, like recent studies outlining similar ecological ripple effects following the disappearance of wolves in the American West — may cause land managers to reconsider the importance of predatory species in how ecosystems function.

The findings are consistent, researchers say, with predictions made more than half a century ago by the famed naturalist Aldo Leopold, often considered the father of wildlife ecology.

“When park development caused cougar to begin leaving Zion Canyon in the 1930s, it allowed much higher levels of deer browsing,” said Robert Beschta, an OSU professor emeritus of forest hydrology. “That set in motion a long cascade of changes that resulted in the loss of most cottonwoods along the streambanks and heavy bank erosion.”

“But the end result isn’t just loss of trees,” he said. “It’s the decline or disappearance of shrubs, wetland plants, amphibians, lizards, wildflowers, and even butterflies.”

Until recently, ecologists had a poor understanding of how the loss of an important predator, such as wolves or cougar, could affect such a broad range of other plant and animal species. But the evidence is now accumulating that primary predators not only have direct effects in influencing the population sizes of native grazing animals such as deer and elk — they also have indirect effects in changing their foraging behavior, in what has been called “the ecology of fear.”

That phenomenon, the scientists say, has been shown as vividly in Zion National Park as any other location they have ever studied.

In Zion Canyon, which since the early 1900s has been a popular tourist attraction, cougars are virtually absent, mostly just scared off by the huge influx of human visitors. With their natural enemy gone, growing and ravenous deer populations ate young cottonwood trees almost as quickly as they sprouted, robbing streambanks of shade and erosion protection.

As a result, floodplains began to erode away. Other types of vegetation and the animal species dependent on them suffered. And unless something is done, cottonwoods in Zion Canyon may ultimately disappear in areas accessible to deer, the researchers said.

By contrast, a nearby roadless watershed has similar native ecology but is sufficiently remote that it still has an intact cougar population and far fewer mule deer. In contrast to Zion Canyon, streambanks in this watershed have nearly 50 times more young cottonwood trees as well as thriving populations of flowers, lizards, butterflies, and several species of water-loving plants that help stabilize stream banks, provide food-web support, and protect floodplains for use by many other animal species.

“The documentation of species abundance that we have in this study is very compelling,” said William Ripple, a professor in the OSU Department of Forest Resources and lead author on the study. Researchers did a systematic survey of channel dimensions, streambank condition, vegetation and species presence along each study site.

“These two canyons, almost side by side, have a similar climate and their ecosystems should be quite similar,” Ripple said. “But instead they are very different, and we hypothesize that the long-term lack of cottonwood recruitment associated with stream-side areas in Zion Canyon indicates the effects of low cougar and high deer densities over many decades.

“It’s a great research setting and a great opportunity to assess the potential importance of a key predator,” he said. “We hope to conduct additional research in Zion National Park to further explore the findings of this initial study.”

It’s important to remember, the researchers said, that the ultimate driver behind all of these changes is humans — in the case of Zion Canyon, simply by their presence. That canyon receives nearly three million human visitors a year, the adjacent North Creek a stray handful of hikers. Cougars in Zion Canyon were not intentionally killed or removed, they just left due to the increased presence of humans.

As findings such as this — the way cougars affect deer and wolves affect elk — continue to mount, land managers may have to acknowledge the potentially enormous impact of these grazing animals on other ecosystem processes, scientists say. This could open the way to new management options once the role of herbivory by deer, elk, or other grazing animals is more fully understood.

In systems with wild ungulates, the sustainability of riparian habitats and biodiversity may require both predation on these herbivores as well as the fear of predation to further affect their behavior, the researchers concluded.

Ripple and Beschta considered other factors that may have played a role in loss of cottonwood trees in Zion Canyon, such as climate fluctuations or human interventions to stream channels, but concluded that those impacts could not have caused the enormous loss of trees and associated impacts to other biota that were found in the canyon.

The findings of this study may be relevant to other ecosystems in the U.S. and around the world where key predators have been removed, the researchers said, and high populations of native herbivores such as deer or elk — or domestic grazers such as cattle or sheep — affect native biodiversity.

This research was funded by the National Park Service.

 Story Source: The above story is based on materials provided by Oregon State UniversityNote: Materials may be edited for content and length.
Source: http://www.sciencedaily.com/releases/2006/10/061024214739.htm

Hunters or Hunted? Wolves vs. Mountain Lions

Posted by Mark Elbroch of Panthera in Cat Watch

F109, a 6-yr old cougar, nursing three 3-week old kittens. Credit Mark Elbroch/Panthera

F109, a six-year-old cougar, nursing three three-week-old kittens. She wears a Vectronics satellite collar which allows researchers to follow her movements in near real time and study the secret lives of mountain lions. Photograph by Mark Elbroch/Panthera

Wolves are coursing, social predators that operate in packs to select disadvantaged prey in open areas where they can test their prey’s condition. Mountain lions are solitary, ambush predators that select prey opportunistically (i.e., of any health) in areas where slopes, trees, boulders, or other cover gives them an advantage. Thus, wolves and cougars inhabit and utilize different ecological niches, allowing them to spatially and temporally coexist; nevertheless, in the absence of wolves, cougars utilize areas traditionally assumed to be the sole dominion of coursing wolves. This suggests that where wolves are sympatric with cougars, wolves limit mountain lions.

In fact, wolves kill mountain lions. This has never been disputed. Wolves are considered the dominant competitors in most interactions between the species. Take for instance, the Hornocker Institute study of mountain lions in Northern Yellowstone led by Dr. Toni Ruth, in which researchers discovered the remains of three mountain lions killed by wolves. What is contentious is the idea that mountain lions might kill wolves.

Look carefully for the mountain lion in the background, pushed off its kill by a large wolf...caught on remote camera. Credit Teton Cougar project/Panthera

Look carefully for the mountain lion in the background, pushed off its kill by a large wolf caught on remote camera. Photograph courtesy Teton Cougar Project/Panthera

Liz Bradley, a Montana Fish, Wildlife and Parks wolf biologist, reports that she has discovered five wolves killed by mountain lions in three years—all bearing the characteristic canine punctures in their skulls betraying the identity of the perpetrator. Some dispute her claims and point out that wolves fight each other too, especially adjacent packs, and that they also attack the head; skeptics believe a canine puncture in a wolf skull could be made by another wolf just as easily as a mountain lion.

The Teton Cougar Project operates in the Southern Yellowstone Ecosystem, and is one of very few long-term studies of mountain lions. Since the start of the project, wolves have trickled into the area, established territories and reproduced. In 2001, U.S. Fish and Wildlife Service surveys estimated that there were about 10 wolves in our study area, and that number steadily increased to as high as 91 in 2010. To date, we’ve documented five lions killed by wolves, all kittens, and all less than six months old while they were still relatively slow to climb and less than fully coordinated. But it was just last October that we finally documented the contrary. For the first time, a mountain lion we were tracking killed a wolf.

She’s a particularly feral mountain lion, F109, an adult female with three three-month-old kittens. All cougars are feral, of course, but there’s something unique about F109. She has “crazy” eyes, and always wanders the most rugged, inhospitable terrain. She was near impossible to catch in the first place. She’s a survivor.

We can’t tell you exactly what happened, but we can describe what we deciphered from the clues left behind in the snow. F109 was up high traversing steep, barren slopes, where we expected there was little game. Nevertheless, her location data indicated that she’d stopped and we suspected she’d made a kill. We slogged up the mountain to investigate, the ground bare of snow adjacent the road, but as deep as our thigh in the high bowl where she lingered. The entire area preceding her position was a mosaic of wolf tracks and trails. A wolf pack made up of adults, subadults and pups had criss-crossed the area, leaving barely a patch of snow without their sign.

Perhaps the wolves had challenged F109, or perhaps just one of them wandered too close to her kittens, or perhaps a pup felt like exploring on its own—trying to decipher the absolute pandemonium of tracks was beyond us. Whatever the circumstances, F109 captured and killed a pup born this year just above the chaos of wolf activity. By this time (November), wolf pups are sizable, their skulls larger than those of coyotes. We discovered the signs of struggle, the telltale blood in the snow, and the pup’s remains beneath a lonely subalpine fir: a pile of coal black fur, bone shards from the legs, and the skull, skinned but completely intact. F109 and her kittens had consumed the pup completely.

Thus far, our research has supported exactly what everyone  expected: Wolves dominate mountain lions in most encounters. But, this recent exchange is particularly exciting. No longer can we say that wolves dominate mountain lions in all encounters. What circumstances led to F109 turning the tables, we do not know. Perhaps F109’s predecessors served as naïve intermediaries relearning to coexist with a dominant competitor, a species absent since 1926, when the last wolf was killed in Yellowstone National Park. Perhaps F109 is evidence that lions learn quickly and adapt, and that mountain lions will successfully coexist with wolves in the Yellowstone Ecosystem for generations to come.

Source: http://newswatch.nationalgeographic.com/2013/12/04/hunters-or-hunted-wolves-vs-mountain-lions/

Find more on: http://www.outdoorhub.com/news/researchers-find-evidence-mountain-lion-predation-wolves/