Why is our wildlife in trouble? Because we’re ignoring science

by Emma Burns
Cattle drovers have won back the right to graze livestock in the Australian Alps – against scientists’ advice. AAP Image/Bob Richardson

From reef dredging, to shark culling, to opening old-growth forests to logging, environmental policies are leaving Australia’s wildlife exposed to threats. The reason, we propose, is that society and government are often ignoring science – particularly ecology.

In a recently published book, more than 80 Australian environment professionals looked at what we have learned from studying ecosystems.

This book is based on long-term field research in numerous ecosystems. From this research, there are examples of science both being used and ignored in management and policy.

There is some good news. Forest studies have led to more sustainable forestry in Tasmania, and potentially soon in Victoria. And new restoration techniques are being trialed to protect endangered woodlands in the Australian Capital Territory.

But there’s still a long way to go. Here are three examples where science is seemingly being ignored by current environmental policy.

Alpine grazing

Under a trial approved by the federal government, cattle are now once again grazing in the Alpine National Park.

There is no scientific case for the trial. Since the 1940s scientists have been monitoring the alpine ecosystems.

For instance we know that hard-hooved animals such as cattle, sheep, horses, deer and pigs have significant negative impacts. These include changes to species composition, ecosystem dynamics, and fewer herbs such as Billy Buttons and Snow-daisies.

These studies also clearly demonstrate that grazing by domestic livestock does not reduce the frequency or severity of fire in the Australian alps, and can actually increase the risk of fire, as grazing encourages growth of flammable shrubs.

As a consequence of these studies, grazing of sheep and cattle had been phased out of most alpine areas. It poses a clear threat to the alpine ecosystem and natural heritage values of Alpine National Park, and we know that when grazing stops, the alpine ecosystems recover — albeit slowly, and future recovery is unlikely to be as robust as past recovery because environmental conditions are changing.

Alpine Billy Button Photo by Henrik Wahren

Culling fruit bats

Queensland and New South Wales are currently culling fruit bats, despite evidence that culls do not reduce health risks or work.

The threatened spectacled flying fox (Pteropus conspicillatus), targeted as part of the culls, also falls under conservation regulations and provides free services for human society, such as dispersal of pollen and seeds. But many humans fear them because of Hendra virus, and dislike them because urban camps are smelly and noisy, and because they damage commercial fruit crops.

Spectacled Flying-foxes Photo by A. McKeown

Regular calls are made for their conservation status to be downgraded and for management interventions such as camp removal and culling to be adopted. But a ten-year study that we referred to of the habits of spectacled flying foxes demonstrates that apparently simple solutions like moving or destroying camps will ultimately fail because the species is nomadic — naive individuals are always arriving at camps meaning that camps easily re-establish at the site or nearby.

The often repeated claims that flying-fox populations are exploding are also not supported by the research.

Forest management

Recently Prime Minister Tony Abbott suggested that too much forest is locked away from logging and blames “green ideology” for this. We don’t need ideology driving decision making about forest management but more science would be good.

Research on the effects of the 2009 Black Saturday fires in Victoria shows that a decline in hollow bearing trees, which is leading to declines in some fauna, has been linked to these high severity fires and a long history of timber harvesting. On the basis of this research, as well as economic factors, there is a public campaign to change this area’s land tenure from State Forest to National Park.

Professor David Lindenmayer proposes a Giant Forest National Park

However this research is specific to forests in Victoria, and the story may be different in other forest systems. Each system in question needs independent research.

How do we get more science in policy?

Environmental scientists, researchers and policy-makers have a “social imperative” to increase scientific knowledge in policy. Alongside our work on ecosystems, we developed a policy handbook to guide policy makers. And we encourage more ecologists, and their institutions, to distill and communicate their science in similar ways.

It’s not too late, but scientist and policy-makers need to work together and act with the urgency, scale and intelligence needed to meet our environmental challenges.

The book and policy handbook referred to in this article were supported by the Terrestrial Ecosystem Research Network. TERN has catalysed collaborations between researchers dedicated to ecological research but who would have been unlikely to work together without support from TERN.

Source: http://theconversation.com/why-is-our-wildlife-in-trouble-because-were-ignoring-science-27226

British Columbia’s hunting quotas are not based on science

Ignacio Yufera/FLPA

Data on grizzly bears in British Columbia are not reliable enough to justify higher hunting quotas, researchers argue.

As the Canadian province of British Columbia prepares to open its annual grizzly-bear hunting season, conservation scientists are protesting the provincial government’s decision to expand the number of animals that can be killed.

British Columbia officials estimate that there are 15,000 grizzlies (Ursos arctos horribilis) in the province, making up roughly one-quarter of the North American population. Although some sub-populations are declining and the species is listed as of “special concern” by some environmental bodies, it is not listed under Canada’s Species at Risk Act, which would afford the bears government protection. Citing the recovery of some sub-populations, the government has opened up previously closed areas to hunting and increased the number of hunting tags for bear kills from about 1,700 to 1,800.

But some researchers say that the original limits for the bear hunt were set too high for sustainable management, and the revised quota could exacerbate that problem.

“Wildlife management wraps itself in science and presents itself as being scientific, but really, when you examine it, it isn’t true,” says Paul Paquet, a biologist at the Raincoast Conservation Foundation in Sidney and the University of Victoria, Canada, and a co-author of a letter in Science this week1 making the complaint.

The allowance is much higher than the actual kill rate — about 300 grizzlies are taken by hunters each year in the province, mainly as trophies — but Paquet and other conservation scientists argue that it is still possible that grizzly bears are dying at a rate that is too high for sub-populations to support.

“They’re going in the wrong direction,” says Kyle Artelle, a conservation ecologist at Simon Fraser University in Burnaby, Canada, and a co-author of the letter.

Last year, Artelle and his colleagues reported that it is common for more bears to die than the government’s stated “maximum allowable mortality rate” of 6% of the population per year2. In more than half of British Columbia’s 42 huntable regions the number of deaths from ‘unnatural causes’, such as road accidents and hunting, exceeded that target for at least one three-year period between 2001–2011. The researchers conclude that reducing the risk of such ‘overkills’ to a low level would require an 81% reduction in the target. “Because these are long-lived, slow-reproducing populations, they don’t necessarily recover from overkill,” says Paquet.

Garth Mowat a biologist with British Columbia’s ministry of forests, lands and natural-resource operations, counters that the 6% target was never meant to be a hard cap. “We choose a conservative number because we know we’re going to go over it occasionally,” he says. “I think [the quotas] are as good as we can do with the data we have, and based on all that, the hunt is sustainable.”

Artelle disagrees that a 6% allowable mortality figure is conservative. He points out that other studies have come up with estimates of 0–5% for British Columbia2. And although a December 2013 study by Mowat and his colleagues concluded that there are about 13,000–14,000 grizzlies in the province3, Paquet says that the number could be as low as 8,000 or higher than 15,000. The data behind such estimates, which come from sources ranging from aerial surveys to traps that snag the hair of passing bears, are often sparse or outdated, he says. “In many cases [the population estimate] will be based on assumptions that are maybe 10 years old. None of this is easy, obviously. But we need to take account of the uncertainties,” he says.

The Convention on International Trade in Endangered Species of Wild Fauna and Flora has banned the import of products from grizzly hunts in British Columbia to Europe, citing the province’s failure to implement a grizzly bear strategy it proposed in 2003, which called for better population assessments, among other things.

“In the United States, there’s recourse to courts,” says Paquet, who notes that there are frequent legal battles over US hunting and the country’s Endangered Species Act. “In Canada there’s essentially no appeal.”

Nature doi:10.1038/nature.2014.14914
  1. Artelle, K. A., Reynolds, J. D., Paquet, P. C. & Darimont, C. T. Science 343, 1311 (2014). Show context
  2. Artelle, K. A. et al. PLoS ONE 8, e78041 (2013). Show context
  3. Mowat, G., Heard, D. C. & Schwarz, C. J. PLoS ONE 8, e82757 (2013). Show context

Source: http://www.nature.com/news/canadian-grizzly-bears-face-expanded-hunt-1.14914

10 Limitations on Progress in Ecology

Charley Krebs

Ecological science moves along slowly in its mission to understand how the Earth’s populations, communities, and ecosystems operate within the constraints of human impacts on the Biosphere. The question of the day is can we identify the factors currently limiting the rate of progress so that at least in principle we could speed up progress in our science. Here is my list.

1. A shortage of ecologists or more properly jobs for ecologists. In particular a scarcity of government agencies employing ecologists in secure jobs to work on stable, long-term environmental projects that are beyond the scope of university scientists. Many young ecologists of high quality are stalled in positions that are beneath their talents. We are in a situation similar to having highly trained medical doctors being used as hospital janitors. This is a massive failure on many fronts, regional and national, political and scientific. Many governments around the world think economists and lawyers are key while environmental scientists are superfluous.

2. The lack of proper funding from both government, private companies and private individuals. This is typified by the continual downsizing of government scientists working on natural resource problems – fisheries, wildlife, park management – and continuing political interference with scientific objectives. Private companies too often rely on taxpayers to fund their environmental investigations and do not view them as a part of their business model. Private citizens give money to medical research rather than to environmental programs largely based on the belief that of all the life on Earth, only the human component is important.

3. The deficiency of taxonomic expertise to define clearly the species that inhabit the Earth. The estimates vary but perhaps only 10% of the total biota can be given a Latin name and morphological description, leaving out for the moment all the bacteria and viruses. Equate this with having a batch of various shaped coins in your pocket with only a few of them giving the denomination. This problem has been identified for years with little action.

4. Given adequate taxonomy, the lack of adequate natural history data on most of the biota. This activity, so critical for all ecological science, was called “stamp collecting” and thus condemned to the lowest point on the scientific totem pole. The consequence of this is that we try to understand the Earth with data only on butterflies, some birds, and some large mammals.

5. A failure of ecologists to map out the critical questions facing natural populations, communities, and ecosystems on Earth. The roadmap of ecology is littered with wrecks of ideas once pushed to explain nearly everything, and we need a more nuanced map of what is a critical issue. There are a considerable number of fractures within the ecological discipline about what needs to be done, if people and money were available. This fosters the culture of I win = you lose in competition for money and jobs.

6. The confusion of mathematical models with reality. There is a strong disconnect between models and data that persists. Models rapidly proliferate, data are slow to accumulate, so we try to paper over the fragility of our understanding with mathematical wizardry, trying to be like physicists. Connecting model predictions with empirical data studies would go a long way to righting this problem but it is a tall order in a world that confuses the number of publications and h scores with important contributions.

7 The fact that too many ecologists do not adopt the scientific method of investigation, to carry out experiments with multiple alternative hypotheses with clear predictions. Arguments continue endlessly based on words (‘concepts’) that are so vaguely defined as to be meaningless operationally. If you need an example, think ‘stability’ or ‘diversity’. These vague words are then herded into pseudo-hypotheses to doubly confound the confusion over what the critical questions in ecology really are.

8. The need for ecologists to work in stable groups. Serious ecological problems demand expertise in many scientific specialities, and we need better mechanisms to foster and maintain such groups. The assessment of scientists on the basis of individual work is long out of date, the Nobel Prize is an anachronism, and we need strong groups concentrating on important issues for long term studies. At the moment many groups exist to do meta-analyses and fewer to do science.

9. Placing the technological horse in front of the ecological cart. Ecology like many sciences is often led by technology rather than by questions. The current DNA bandwagon is one example, but we should not get so confused to think that that most important questions in ecology are those that use the most technology. Jumping from one technological bandwagon to the next is a good recipe for minimizing progress.

10. The fractionation of ecology into subdisciplines and the assumption that the only important research work has been done since 2000. Aquatic ecologists do not talk to terrestrial ecologists, microbial ecologists live in their own special world, and avian ecologists do not talk to insect ecologists. The result is that the existing literature is too often wasted by investigators who have no idea that question XX has already been answered either in another subdiscipline or in existing literature from 50 years ago.

Not all of these limitations apply to every ecologist, and at best I would view them as a set of guideposts that need to be considered as we move further into the 21st century.

Krebs, C. J. 2006. Ecology after 100 years: progress and pseudo-progress. New Zealand Journal of Ecology 30:3-11.

Majer, J. D. 2012. Critical times: How has ecological research responded over the past 35 years? Austral Ecology 37:149-152.

Sutherland, W. J. et al. 2010. A horizon scan of global conservation issues for 2010. Trends in Ecology & Evolution 25:1-7.

Source: https://www.zoology.ubc.ca/~krebs/ecological_rants/?p=396

An elegant chaos

Universal theories are few and far between in ecology, but that is what makes it fascinating.

To some scientists in other fields, ecology must seem relatively straightforward. Many of the organisms live at a very human scale and are easy to access, especially in community ecology. Ecologists do not need special equipment to see and count elk. There are no electron microscopes, space telescopes or drilling rigs that can go wrong. Easy.

And yet, ecologists know that their subject can prove as troublesome as any other. Ecology would be easy, were it not for all the ecosystems — vastly complex and variable as they are. Even the most austere desert or apparently featureless moor is a dense, intricate network of thousands of species of photosynthesizers, predators, prey animals, parasites, detritovores and decomposers. As naturalist E. O. Wilson put it: “A lifetime can be spent in a Magellanic voyage around the trunk of a single tree.” And not all of what one might learn from such a voyage would be transferable to the next tree. History, chance, climate, geology and — increasingly — human fiddling mean that no two ecosystems work in the same way.

Scientists like to impose structure and order on chaos, and ecologists are no different. Ecology has its grand theories, but they are riddled with conditional clauses, caveats and exceptions. There are clear patterns at the global and single-species scales, but the middle ground is, as biologist John Lawton affectionately put it in 1999, “a mess”. It is doubtful that the generalities that underlie the complex patterns of nature will ever be phrased succinctly enough to fit on a T-shirt.

This complexity is demonstrated by work that questions a famous and elegant ‘trophic cascade’ in Yellowstone National Park, Wyoming, discussed on page 158. The theory goes that wolves, restored to the park in the 1990s after decades of absence, scare elk away from certain areas. That has a knock-on effect for the rest of the food chain, allowing aspen and willows to flourish after decades of being browsed nearly to death. But studies in recent years suggest that wolves alone do not control the ecosystem. Other factors — the presence of beaver dams and grizzly bears, weather, hunting by humans and even climate change — also affect the elk population and the growth of trees and shrubs.

It would be useful to have broad patterns and commonalities in ecology. To know how ecosystems will respond to climate change, or to be able to predict the consequences of introducing or re­introducing a species, would make conservation more effective and efficient. But a unified theory of everything is not the only way to gain insight.

More ecologists should embrace the non-predictive side of their science. Teasing out what is going on in complex systems by looking at how ecosystems evolved, and by manipulating the environment in experiments, is just as much a science as creating formulae for how ecosystems work.

“If ecosystems all worked in the same way, they would lose much of their mystery, their surprise and their beauty.”

Paradigm shifts, after all, are rare in ecology. Debates are often resolved when competing concepts combine, rather than when one pushes the other completely off the table. Take the contrasting ideas of top-down regulation of ecosystems by carnivores and bottom-up regulation effected by the nutrition available from plants. The field is slowly working towards an integrated theory to predict when the top will rule and when the bottom will be in charge — and that theory will take the time to consider the middle players, the herbivores.

Other ecological debates have followed a similar path. Disagreement over whether complex ecosystems are more or less stable than simpler ones, for example, is also settling to a consensus: it depends.

Useful practical predictions need not stem from universal laws. They may come instead from a deep knowledge of the unique workings of each eco­system — knowledge gained from observation and analysis. Proposing sweeping theories is exciting, but if ecologists want to produce work useful to conservation, they might do better to spend their days sitting quietly in eco­systems with waterproof notebooks and hand lenses, writing everything down.

Ecological complexity, which may seem like an impenetrable thicket of nuance, is also the source of much of our pleasure in nature. If ecosystems were simple puzzles that all worked in the same way, they would lose much of their mystery, their surprise and their beauty. A lot of conservation work aims to protect the complexity and variability that makes ecosystems so hard to understand, and indeed to conserve.

Ecological rules are not the only reasons to promote conservation and fight extinctions. Sometimes we can argue for the conservation of particular species because ecology provides a scientific basis for it. At other times, we make the argument because there is a good chance that ecology will soon catch up and explain why the species are important.

But even if some predators do little but sit at the top of their food pyramids, creaming off a few herbivores, would we really want to live in a world without them? Answering that question really is easy.

Nature 507, 139–140 (13 March 2014) doi:10.1038/507139b

Source: http://www.nature.com/news/an-elegant-chaos-1.14849