Arctic Alaska’s Conservation Conundrum

By  Dr. Joel Berger

The Arctic wind blows hard on the snow-covered plains a few hundred miles southwest of Prudhoe Bay.  It’s eight degrees in the winter chill. Despite global warming, I am still quite cold.  I watch the tracks of the grizzly bear disappear upslope as they narrow toward a newborn calf. Out of my field of vision its mother, a muskoxen – the quintessential land animal of the Arctic – stands guard. But it is no match for the powerful predator looking for its next kill.

Grizzly bears circle in the foreground with musk ox and calf in the distance, Joel Berger © Wildlife Conservation Society

About 3,500 years ago, the last woolly mammoths died on a distant Arctic island in the Chukchi Sea. Muskoxen—mammoths’ shaggy-coated Pleistocene contemporaries—still roam the Alaskan Arctic today. Muskoxen are known to many for their distinctive huddling behavior evolved for defense against predators like grizzly bears and wolves.   Recently this prey-predator relationship has itself become the focus of a discussion on conservation tools and approaches. Continue reading

Advertisements

Polar Bear – POV Cams (Spring 2014)

This video was edited and compiled from raw footage recorded by a camera equipped radio collar that was put on a female polar bear in the Beaufort Sea during April 2014 by the US Geological Survey. The video, which is the first ever from a free-ranging polar bear on Arctic sea ice, shows an interaction with a potential mate, playing with food, and swimming at the water’s surface and under the sea ice. These videos will be used by the US Geological Survey in research to understand polar bear behavior and energetics in an Arctic with declining sea ice. Note: Some creative license has been taken to make this footage easier to follow and understand, including playful language that helps describe the polar bear’s actions.

Location: , Arctic, Beaufort Sea

Date Taken: 4/16/2014

Length: 2:18

Video Producer: Paul Laustsen , USGS Office of Communications and Publishing
Note: This video has been released into the public domain by the U.S. Geological Survey for use in its entirety. Some videos may contain pieces of copyrighted material. If you wish to use a portion of the video for any purpose, other than for resharing/reposting the video in its entirety, please contact the Video Producer/Videographer listed with this video. Please refer to the USGS Copyright section for how to credit this video.

Additional Video Credits:

Produced by USGS
Anthony Pagano: Principal Investigator

Produced by:
Paul Laustsen, Karen Oakley and Stephen M. Wessells

Edited by:
Stephen M. Wessells

Scientific Reviewers:
Todd Atwood
George Durner
Karen Oakley

Acknowledgements:
Mehdi Bakhtiari,
Exeye, LLC, Bristow, VA, USA

USGS Changing Arctic Ecosystems Initiative

Adam Ravetch
Arctic Bear Productions

Source: http://gallery.usgs.gov/videos/811#.U5b2c3J5NIF

British Columbia’s hunting quotas are not based on science

Ignacio Yufera/FLPA

Data on grizzly bears in British Columbia are not reliable enough to justify higher hunting quotas, researchers argue.

As the Canadian province of British Columbia prepares to open its annual grizzly-bear hunting season, conservation scientists are protesting the provincial government’s decision to expand the number of animals that can be killed.

British Columbia officials estimate that there are 15,000 grizzlies (Ursos arctos horribilis) in the province, making up roughly one-quarter of the North American population. Although some sub-populations are declining and the species is listed as of “special concern” by some environmental bodies, it is not listed under Canada’s Species at Risk Act, which would afford the bears government protection. Citing the recovery of some sub-populations, the government has opened up previously closed areas to hunting and increased the number of hunting tags for bear kills from about 1,700 to 1,800.

But some researchers say that the original limits for the bear hunt were set too high for sustainable management, and the revised quota could exacerbate that problem.

“Wildlife management wraps itself in science and presents itself as being scientific, but really, when you examine it, it isn’t true,” says Paul Paquet, a biologist at the Raincoast Conservation Foundation in Sidney and the University of Victoria, Canada, and a co-author of a letter in Science this week1 making the complaint.

The allowance is much higher than the actual kill rate — about 300 grizzlies are taken by hunters each year in the province, mainly as trophies — but Paquet and other conservation scientists argue that it is still possible that grizzly bears are dying at a rate that is too high for sub-populations to support.

“They’re going in the wrong direction,” says Kyle Artelle, a conservation ecologist at Simon Fraser University in Burnaby, Canada, and a co-author of the letter.

Last year, Artelle and his colleagues reported that it is common for more bears to die than the government’s stated “maximum allowable mortality rate” of 6% of the population per year2. In more than half of British Columbia’s 42 huntable regions the number of deaths from ‘unnatural causes’, such as road accidents and hunting, exceeded that target for at least one three-year period between 2001–2011. The researchers conclude that reducing the risk of such ‘overkills’ to a low level would require an 81% reduction in the target. “Because these are long-lived, slow-reproducing populations, they don’t necessarily recover from overkill,” says Paquet.

Garth Mowat a biologist with British Columbia’s ministry of forests, lands and natural-resource operations, counters that the 6% target was never meant to be a hard cap. “We choose a conservative number because we know we’re going to go over it occasionally,” he says. “I think [the quotas] are as good as we can do with the data we have, and based on all that, the hunt is sustainable.”

Artelle disagrees that a 6% allowable mortality figure is conservative. He points out that other studies have come up with estimates of 0–5% for British Columbia2. And although a December 2013 study by Mowat and his colleagues concluded that there are about 13,000–14,000 grizzlies in the province3, Paquet says that the number could be as low as 8,000 or higher than 15,000. The data behind such estimates, which come from sources ranging from aerial surveys to traps that snag the hair of passing bears, are often sparse or outdated, he says. “In many cases [the population estimate] will be based on assumptions that are maybe 10 years old. None of this is easy, obviously. But we need to take account of the uncertainties,” he says.

The Convention on International Trade in Endangered Species of Wild Fauna and Flora has banned the import of products from grizzly hunts in British Columbia to Europe, citing the province’s failure to implement a grizzly bear strategy it proposed in 2003, which called for better population assessments, among other things.

“In the United States, there’s recourse to courts,” says Paquet, who notes that there are frequent legal battles over US hunting and the country’s Endangered Species Act. “In Canada there’s essentially no appeal.”

Nature doi:10.1038/nature.2014.14914
  1. Artelle, K. A., Reynolds, J. D., Paquet, P. C. & Darimont, C. T. Science 343, 1311 (2014). Show context
  2. Artelle, K. A. et al. PLoS ONE 8, e78041 (2013). Show context
  3. Mowat, G., Heard, D. C. & Schwarz, C. J. PLoS ONE 8, e82757 (2013). Show context

Source: http://www.nature.com/news/canadian-grizzly-bears-face-expanded-hunt-1.14914

Overkill – trophy hunting slams BC’s Grizzly bears

In BC, Canada, a surge in trophy hunting may be reducing Grizzly bear populations, writes Anna Taylor. A new study finds evidence of serious Grizzly bear ‘overkill’ from multiple causes of mortality – in which trophy hunting is a big contributor.

In one area, trophy hunters killed 24 more grizzlies than the quota allowed, and overhunting was particularly prevalent for female bears that are critical for a sustainable population.

The British Columbia Government claims that the quotas they set for the number of Grizzly bears allowed to be killed each year ensure that hunting practices are sustainable.

But a new study into the management of Grizzly bears in BC, published in the open-access journalPLoS ONE, finds that so-called ‘overkills’ occurred in half the Grizzly bear populations.

The findings are also relevant to the USA andproposals to strip Grizzly bears of federal protection under the Endangered Species Act.

Worrying discoveries

Scientists set out to test the BC Government’s claim and made some worrying discoveries. Kyle Artelle, from Simon Fraser University and lead author of the study, explains:

“We tested how well managers were able to maintain grizzly bear kill rates below limits their own biologists have deemed sustainable.

“This assessment was straightforward – for a given population and across three management periods we simply compared the number of bears the province said could sustainably die (‘mortality limits’) by human-caused kills to the number that actually died.”

Too many unknowns

To do this his team looked at three key quantities that carry considerable uncertainty: population estimates; population growth rates; and the number of unreported human-caused bears deaths, including poaching kills.

The population growth rates are key in this, says Artelle – also a wildlife scientist with the Raincoast Conservation Foundation – because they are used to estimate how many bears can be killed in a given population without causing declines.

“You can imagine how these might contribute to undetected overkills – for instance if you assume a population is a given size and set your hunting quotas accordingly, if it turns out the population is actually smaller, then the hunting quotas you set would have been too high.

“We addressed this quantitatively and found that, based on unaddressed uncertainty, overkill rate might indeed be considerably higher than previously assumed.”

They found that overkills – defined as taking place when the number of kills exceeds the mortality limits that are set by the government – occurred in half of the populations that are open to hunting. Artelle says that hunting is adding to the other problems faced by the bears:

“Although these were caused by a mix of hunting and other human-caused kills – road and rail accidents, self-defence kills, ‘problem bear’ kills and so on – we found that almost all overkills could have been prevented by reducing or eliminating the hunt.”

Hunting quotas breached

In one area, trophy hunters killed 24 more grizzlies than the quota allowed, and overhunting was particularly prevalent for female bears that are critical for a sustainable population. This shows that guidelines that encourage hunters to avoid females are clearly inadequate.

There is considerable uncertainty about Grizzly bear population growth rates and unreported human kills, as well as how hunting affects other aspects of Grizzly bear biology such as genetics, social interactions and evolutionary processes.

It is also uncertain exactly how long different populations take to recover from population declines, the effects of changes to food availability and cumulative effects of other threats to grizzlies, logging and development for example.

Population uncertainties

Of great concern is the uncertainty of total population size. The current best estimate is 15,000 Grizzly bears in British Columbia – however the figure could be higher or lower.

It appears that few on-the-ground surveys have actually been done, with the estimate being largely based on computer modelling or expert opinion.

The government claims the management of the Grizzly bear hunt is based on “sound science” – yet Jessie Housty, tribal councillor of the Heiltsuk First Nation, doubts this.

On the Central BC Coast, where government sanctioned trophy hunting is at odds with tribal law that prohibits it, she emphasises that no inventories have been conducted.

“How could the government possibly have a solid understanding of these bears they condemn to the hunt without setting foot in our Territory?”

These are known unknowns

The government is failing to take all of these uncertainties into account when setting hunting limits, says Artelle.

“This uncertainty in and of itself is not inherently a problem – uncertainty exists in all management. The problem in BC Grizzly bear management is that the uncertainty is simply ignored.

“Although the government maintains their targets are conservative, a simple comparison between their own limits and their own records of kill rates show that is clearly not the case.”

Dr Chris Darimont, science director at the Raincoast Conservation Foundation (RCF) and a co-author of the study, is worried:

“Ignoring uncertainty – in dimensions such as true population size – is like playing Russian Roulette. As the history of wildlife management has shown repeatedly, the consequences of not accounting for the unknowns are grave.”

The RCF has raised concerns about BC’s Grizzly trophy hunt in the past. The European Union banned the import of BC Grizzly bear parts in 2002 due to their concerns over sustainability.

Hunting quotas should be halved – or banned

There is one very simple solution to the problem of overkills – reduce the hunt.

“If the government wants to ensure mortality levels are kept below limits set by their own biologists their targets need to be reduced,” says Artelle.

The scientists found that the BC government could reduce the risk to their Grizzly bears by cutting its hunting quotas by at least a half, which would reduce the probability of overkills by an average of 85%.

British Columbia is one of the last strongholds for North American Grizzly bears. Since European colonization, they have lost half of their continental range, and even in BC around one third of populations have either gone extinct or are currently threatened.

Multiple threats

“We know that grizzly bears are highly vulnerable to management error – because of their reproductive biology populations that suffer declines often don’t recover, or take considerable time to do so”, said Artelle.

“And at a provincial level the trend is not promising – through recent decades we have seen an overall trend of more and more populations gaining threatened status or disappearing altogether.

“We also know that grizzlies face a variety of other threats that are not yet fully understood, from declining salmon stocks on BC’s coast, white-bark pine failures inland, and climate change and development pressures throughout the province.

“Given the considerable threats many argue that grizzly managers should err on the side of caution, which our analyses strongly suggest they are not currently doing.”

Yet hunting increased

Despite these threats to the Grizzlies, during the study period, between 2001 and 2011, hunting mortality actually increased. For this reason, many people in BC are in favour of the complete elimination of trophy hunting in their province.

The Coastal First Nations, an alliance of nine BC First Nations, have called upon Premier Christy Clark to end the hunt by organizing a petition.

They have banned trophy hunting in their expansive traditional territories in BC’s Great Bear Rainforest because they believe that the government is risking the long-term survival of the bears.

Jessie Housty says: “Our responsibility as First Nations is to step into that regulatory vacuum, and protect the bears in our territories.”

80% of BC residents oppose the grizzly hunt

Environmentalists are also strongly opposed to the hunt, as are 80% of British Columbians, according to a recent McAllister Research Poll.

Throughout North America it is being recognised that hunting must be stopped in order to protect Grizzly bears. Yet in BC, despite widespread disapproval and bad science, the hunt looks set to continue. Artelle concludes:

“In other jurisdictions, such as the province of Alberta and the Kenai peninsula in Alaska, hunts have been closed due to sustainability concerns. In BC there has been a trend through time of a growing number of populations gaining threatened status.

“Whereas history from within and beyond the province suggests cautious management might be warranted, our research found that current management entails considerable risk, suggesting that continued overkills are likely.”

Anna Taylor is a freelance science journalist, specialising in environmental issues and new discoveries in conservation biology. She posts regular blogs on Conservation Jobs.

Anna has also worked in conservation and conservation research for RSPB and other employers in the UK, Africa and the Amazon. She has a BSc in Conservation Biology and a Masters in Ecology and Environmental Biology.

Source: http://www.theecologist.org/News/news_analysis/2271852/overkill_trophy_hunting_slams_bcs_grizzly_bears.html

BC grizzly bears are being over hunted, putting the future of the population at risk, say the authors of a new study released today in the scientific journal PLOS ONE.

Researchers from the University of Victoria, Simon Fraser University and Raincoast Conservation Foundation show in their report that there are serious shortfalls with the management of the grizzly bear hunt in BC.

Researchers found large discrepancies between the upper limit to kills set by the provincial government and the number of grizzly bears killed.

“In half of BC’s remaining grizzly populations, our audit detected overkills, and almost all were associated with excessive trophy hunting,” says Dr. Chris Darimont, UVic geography professor, Raincoast science director and the study’s co-author. “The pattern of overkills we documented surprised and alarmed us, especially for female grizzly bears, which are the reproductive powerhouses of populations.”

BC represents one of the last strongholds for grizzly bears, which have lost about half of their historical range in North America since European colonization.

The report, Confronting Uncertainty in Wildlife Management: Performance of Grizzly Bear Management, is co-authored by Kyle Artelle (lead) and Sean Anderson, SFU PhD students; SFU professors Dr. John Reynolds and Dr. Andrew Cooper, and Dr. Paul Paquet, Raincoast senior scientist and adjunct UVic geography professor.

The report is available at PLOS ONE http://dx.plos.org/10.1371/journal.pone.0078041

How do polar bears stay warm? Research finds an answer in their genes

polar bear looking straight at camera

New study is part of a broader genomic research program aimed at understanding what makes a polar bear a polar bear

A polar bear looking straight at the camera
A male polar bear. Credit: U.S. Geological Survey, Steven C. Amstrup
polar bear walking on an icy terrain
A male polar bear walks on pack ice. Credit: U.S. Fish and Wildlife Service, Eric Regehr
polar bear walking by water
A polar bear in Alaska. Credit: U.S. Fish and Wildlife Service, Steve Hillebrand
a polar bear lying down and facing camera
A polar bear at rest. Credit: U.S. Fish and Wildlife Service, Susanne Miller
Charlotte Lindqvist in front of a background showing a polar bear walking in a cold climate
Charlotte Lindqvist, assistant professor of biological sciences University at Buffalo led the study, which is part of a larger research program devoted to understanding how the polar bear has adapted to the harsh Arctic environment.
 In the winter, brown and black bears go into hibernation to conserve energy and keep warm.

But things are different for their Arctic relative, the polar bear. Within this high-latitude species, only pregnant females den up for the colder months.

So how do the rest survive the extreme Arctic winters?

New research points to one potential answer: genetic adaptations related to the production of nitric oxide, a compound that cells use to help convert nutrients from food into energy or heat.

In a new study, a team led by the University at Buffalo reports that genes controlling nitric oxide production in the polar bear genome contain genetic differences from comparable genes in brown and black bears.

“With all the changes in the global climate, it becomes more relevant to look into what sorts of adaptations exist in organisms that live in these high-latitude environments,” said lead researcher Charlotte Lindqvist, PhD, UB assistant professor of biological sciences.

“This study provides one little window into some of these adaptations,” she said. “Gene functions that had to do with nitric oxide production seemed to be more enriched in the polar bear than in the brown bears and black bears. There were more unique variants in polar bear genes than in those of the other species.”

The paper, titled “Polar Bears Exhibit Genome-Wide Signatures of Bioenergetic Adaptation to Life in the Arctic Environment,” appeared Feb. 6 in the journal Genome Biology and Evolution.

Co-authors include scientists from UB, Penn State University, the U.S. Geological Survey Alaska Science Center, Durham University and the University of California, Santa Cruz.

The genetic adaptations the research team saw are important because of the crucial role that nitric oxide plays in energy metabolism.

Typically, cells transform nutrients into energy. However, there is a phenomenon called adaptive or non-shivering thermogenesis, where the cells will produce heat instead of energy in response to a particular diet or environmental conditions.

Levels of nitric oxide production may be a key switch triggering how much heat or energy is produced as cells metabolize nutrients, or how much of the nutrients is stored as fat, Lindqvist said.

“At high levels, nitric oxide may inhibit energy production,” said Durham University’s Andreanna Welch, PhD, first author and a former postdoctoral researcher at UB with Lindqvist. “At more moderate levels, however, it may be more of a tinkering, where nitric oxide is involved in determining whether — and when — energy or heat is produced.”

The research is part of a larger research program devoted to understanding how the polar bear has adapted to the harsh Arctic environment, Lindqvist said.

In 2012, she and colleagues reported sequencing the genomes of multiple brown bears, black bears and polar bears.

In a paper in the Proceedings of the National Academy of Sciences, the team said comparative studies between the DNA of the three species uncovered some distinctive polar bear traits, such as genetic differences that may affect the function of proteins involved in the metabolism of fat — a process that’s very important for insulation.

In the new study, the scientists looked at the mitochondrial and nuclear genomes of 23 polar bears, three brown bears and a black bear.

The research was funded by the University at Buffalo and the National Fish and Wildlife Foundation.

Media Relations Manager, Architecture, Economic Development, Sciences, Urban and Regional Planning
Tel: 716-645-4655
chsu22@buffalo.edu
Twitter: @UBScience
Pinterest: UB Science